Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 60(27): 3653-3656, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38488046

ABSTRACT

Novel water-dispersible donor-acceptor-donor π-conjugated bolaamphiphiles, having dibenzophenazine as the acceptor and heteroatom-bridged amphiphilic diarylamines as the donors, have been developed. The materials displayed a distinct photoluminescence color change in response to humidity in a poly(vinylalcohol) matrix.

2.
Chem Commun (Camb) ; 60(28): 3862, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38526752

ABSTRACT

Correction for 'Water-dispersible donor-acceptor-donor π-conjugated bolaamphiphiles enabling a humidity-responsive luminescence color change' by Tomoya Enjou et al., Chem. Commun., 2024, https://doi.org/10.1039/d3cc05749f.

3.
Sci Rep ; 14(1): 778, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38253656

ABSTRACT

Accurate determination of human tumor malignancy is important for choosing efficient and safe therapies. Bioimaging technologies based on luminescent molecules are widely used to localize and distinguish active tumor cells. Here, we report a human cancer grade probing system (GPS) using a water-soluble and structure-changeable Eu(III) complex for the continuous detection of early human brain tumors of different malignancy grades. Time-dependent emission spectra of the Eu(III) complexes in various types of tumor cells were recorded. The radiative rate constants (kr), which depend on the geometry of the Eu(III) complex, were calculated from the emission spectra. The tendency of the kr values to vary depended on the tumor cells at different malignancy grades. Between T = 0 and T = 3 h of invasion, the kr values exhibited an increase of 4% in NHA/TS (benign grade II gliomas), 7% in NHA/TSR (malignant grade III gliomas), and 27% in NHA/TSRA (malignant grade IV gliomas). Tumor cells with high-grade malignancy exhibited a rapid upward trend in kr values. The cancer GPS employs Eu(III) emissions to provide a new diagnostic method for determining human brain tumor malignancy.


Subject(s)
Brain Neoplasms , Glioma , Humans , Brain Neoplasms/diagnostic imaging , Brain , Luminescence , Records
4.
Polymers (Basel) ; 15(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38139915

ABSTRACT

Polymers with crystallizable side chains have numerous applications, and their properties depend on their crystal morphologies and phase separation. Structural analysis on a wide spatial scale plays an important role in controlling the thermal properties and higher-order structures of these polymers. In this study, we elucidated the melting and crystallization processes of copolymers with varying crystallizable side-chain fractions over a wide spatial range. Differential scanning calorimetry revealed that the enthalpies of melting and crystallization increased linearly with increasing crystallizable side-chain fraction. The results of wide-angle X-ray scattering indicated that the crystal lattice was hexagonal. Conversely, spherulite-like higher-order architectures with linear structures and radial spreading were observed in the highly crystallizable components, but no micrometer-scale structures were observed in the less crystallizable components. In situ small-angle X-ray scattering was used to elucidate the phase separation and mixing processes. Lamellar crystallites were observed at crystallizable side-chain fractions of >55 wt.%, whereas small crystallites were observed at fractions of <45 wt.%. At temperatures above the order-disorder transition temperature, density fluctuations caused by correlation holes were observed. These properties have a strong effect on the crystallizable side-chain fraction.

5.
ACS Polym Au ; 3(5): 394-405, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37841949

ABSTRACT

Practical applications like very thin stress-strain sensors require high strength, stretchability, and conductivity, simultaneously. One of the approaches is improving the toughness of the stress-strain sensing materials. Polymeric materials with movable cross-links in which the polymer chain penetrates the cavity of cyclodextrin (CD) demonstrate enhanced strength and stretchability, simultaneously. We designed two approaches that utilize elastomer nanocomposites with movable cross-links and carbon filler (ketjenblack, KB). One approach is mixing SC (a single movable cross-network material), a linear polymer (poly(ethyl acrylate), PEA), and KB to obtain their composite. The electrical resistance increases proportionally with tensile strain, leading to the application of this composite as a stress-strain sensor. The responses of this material are stable for over 100 loading and unloading cycles. The other approach is a composite made with KB and a movable cross-network elastomer for knitting dissimilar polymers (KP), where movable cross-links connect the CD-modified polystyrene (PSCD) and PEA. The obtained composite acts as a highly sensitive stress-strain sensor that exhibits an exponential increase in resistance with increasing tensile strain due to the polymer dethreading from the CD rings. The designed preparations of highly repeatable or highly responsive stress-strain sensors with good mechanical properties can help broaden their application in electrical devices.

6.
Gels ; 9(8)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37623113

ABSTRACT

Photoresponsiveness is a promising characteristic of stimulus-responsive materials. Photoresponsiveness can be achieved by incorporating photoresponsive molecules into polymeric materials. In addition, multiple-stimuli-responsive materials have attracted scientists' interest. Among the numerous multiple-stimuli-responsive materials, moisture- and photoresponsive materials are the focus of this report. These stimuli-responsive materials responded to the stimuli synergistically or orthogonally. Unlike most stimulus-responsive materials utilizing moisture and light as stimuli, the materials studied herein switch their photoresponsiveness in the presence of moisture. Appropriate copolymers consisting of hydrophilic acrylamide-based monomers for the main chain and hydrophobic azobenzene moieties switched their bending behaviors at 6-9 wt% water contents. At water contents lower than 6 wt%, the polymeric materials bent away from the light source, while they bent toward the light source at water contents higher than 10 wt%. At a low water content, the bending behaviors can be described on the molecular scale. At a high water content, the bending behavior requires consideration of the phase scale, not only the molecular scale. By controlling the balance between hydrophilicity and hydrophobicity, the switching behavior was achieved. This switching behavior may inspire additional strategies for the application of polymeric material as actuators.

7.
ACS Appl Mater Interfaces ; 15(33): 39777-39785, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37565809

ABSTRACT

We report unique conductive leaf-inspired (in particular, stomata-inspired) supramolecular gas sensors in which acetylated cyclodextrin derivatives rule the electric output. The gas sensors consist of polymers bearing acetylated cyclodextrin, adamantane, and carbon black. Host-guest complexes between acetylated cyclodextrin and adamantane corresponding to the closed stomata realize a flexible polymeric matrix. Effective recombination of the cross-links contributes to the robustness. As gas sensors, the supramolecular materials detect ammonia as well as various other gases at 1 ppm in 10 min. The free acetylated cyclodextrin corresponding to open stomata recognized the guest gases to alter the electric resistivity. Interestingly, the conductive device failed to detect ammonia gases at all without acetylated cyclodextrin. The molecular recognition was studied by molecular dynamics simulations. The gas molecules existed stably in the cavity of free acetylated cyclodextrin. These findings show the potential for developing wearable gas sensors.

8.
Soft Matter ; 18(38): 7369-7379, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36124981

ABSTRACT

Reversible cross-links by non-covalent bonds have been widely used to produce supramolecular hydrogels that are both tough and functional. While various supramolecular hydrogels with several kinds of reversible cross-links have been designed for many years, a universal design that would allow control of mechanical and functional properties remains unavailable. The physical properties of reversible cross-links are usually quantified by thermodynamics, dynamics, and bond energies. Herein, we investigated the relationship between the molecular mobility and mechanical toughness of supramolecular hydrogels consisting of two kinetically distinct reversible cross-links via host-guest interactions. The molecular mobility was quantified as the second-order average relaxation time (〈τ〉w) of the reversible cross-links. We discovered that hydrogels combining fast (〈τ〉w = 1.8 or 18 s) and slowly (〈τ〉w = 6.6 × 103 or 9.5 × 103 s) reversible cross-links showed increased toughness compared to hydrogels with only one type of cross-link because relaxation processes in the former occurred with wide timescales.

9.
Soft Matter ; 18(27): 5027-5036, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35695164

ABSTRACT

Polyurethane (PU) materials with movable crosslinking were prepared by a typical two-step synthetic process using an acetylated γ-cyclodextrin (TAcγCD) diol compound. The soft segment of PU is polytetrahydrofuran (PTHF), and the hard segment consists of hexamethylene diisocyanate (HDI) and 1,3-propylene glycol (POD). The synthesized PU materials exhibited the typical mechanical characteristics of a movable crosslinking network, and the presence of hydrogen bonds from the urethane bonds resulted in a synergistic effect. Two kinds of noncovalent bond crosslinking increased the Young's modulus of the material without affecting its toughness. Fourier transform infrared spectroscopy and X-ray scattering measurements were performed to analyze the effect of introducing movable crosslinking on the internal hydrogen bond and the microphase separation structure of PU, and the results showed that the carbonyl groups on TAcγCD could form hydrogen bonds with the PU chains and that the introduction of movable crosslinking weakened the hydrogen bonds between the hard segments of PU. When stretched, the movable crosslinking of the PU materials suppressed the orientation of polymer chains (shish-kebab orientation) in the tensile direction. The mechanical properties of the movable crosslinked PU materials show promise for future application in the industrial field.

10.
Plant Mol Biol ; 108(4-5): 481-496, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35099666

ABSTRACT

KEY MESSAGE: BEIIb plays a specific role in determining the structure of amylopectin in rice endosperm, whereas BEIIa plays the similar role in the culm where BEIIb is absent. Cereals have three types of starch branching enzymes (BEs), BEI, BEIIa, and BEIIb. It is widely known that BEIIb is specifically expressed in the endosperm and plays a distinct role in the structure of amylopectin because in its absence the amylopectin type changes to the amylose-extender-type (ae-type) or B-type from the wild-type or A-type and this causes the starch crystalline allomorph to the B-type from the wild-type A-type. This study aimed to clarify the role of BEIIa in the culm where BEIIb is not expressed, by using a be2a mutant in comparison with results with be2b and be1 mutants. The results showed that the amylopectin structure exhibited the B-type in the be2a culm compared with the A-type in the wild-type culm. The starch granules from the be2a culm also showed the B-type like allomorph when examined by X-ray diffraction analysis and optical sum frequency generation spectroscopy. Both amylopectin chain-length profile and starch crystalline properties were found to be the A-type at the very early stage of endosperm development at 4-6 days after pollination (DAP) even in the be2b mutant. All these results support a view that in the culm as well as in the endosperm at 4-6 DAP, BEIIa can play the role of BEIIb which has been well documented in maturing endosperm. The possible mechanism as to how BEIIa can play its role is discussed.


Subject(s)
1,4-alpha-Glucan Branching Enzyme/metabolism , Amylopectin/chemistry , Amylopectin/metabolism , Endosperm/metabolism , Oryza/enzymology , Starch/metabolism , Carbohydrate Conformation , Electrophoresis, Polyacrylamide Gel , Magnetic Resonance Imaging , Mutation , Oryza/metabolism , Protein Conformation , Spectrum Analysis , Starch/chemistry , X-Ray Diffraction
11.
Food Sci Nutr ; 9(9): 4916-4926, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34532003

ABSTRACT

We analyzed edible potato starch and observed the interaction between its granular structure and water molecules. We studied the changes caused by gelatinization during heating and stirring using microscopy, micro-FT-IR spectroscopy, and X-ray scattering techniques. A wide range of spatial scales was revealed using these various techniques. The rate of gelatinization varied significantly and was dependent on the starch concentration. The process of adsorption of water on starch molecules was studied using the humidity-controlled FT-IR spectroscopy technique. Furthermore, by comparing the X-ray scattering profiles of dry and wet granules, the 9-nm repeat "cluster" structure was studied. A gradual collapse of the granules occurred during the processes of heating and stirring. A clustered smectic structure and a smectic-like structure were observed in the opaque gel after gelatinization. Upon further heating, a transparent gel was obtained after the melting of the cluster.

12.
Front Plant Sci ; 11: 571346, 2020.
Article in English | MEDLINE | ID: mdl-33312184

ABSTRACT

It is known that one of starch branching enzyme (BE) isoforms, BEIIb, plays a specific role not only in the synthesis of distinct amylopectin cluster structure, but also in the formation of the internal structure of starch granules in rice endosperm because in its absence the starch crystalline polymorph changes to the B-type from the typical A-type found in the wild-type (WT) cereal endosperm starch granules. In the present study, to examine the contribution of BEIIb to the amylopectin cluster structure, the chain-length distributions of amylopectin and its phosphorylase-limit dextrins (Φ-LD) from endosperm and culm of a null be2b mutant called amylose-extender (ae) mutant line, EM10, were compared with those of its WT cultivar, Kinmaze, of japonica rice. The results strongly suggest that BEIIb specifically formed new short chains whose branch points were localized in the basal part of the crystalline lamellae and presumably in the intermediate between the crystalline and amorphous lamellae of amylopectin clusters in the WT endosperm, whereas in its absence branch points which were mainly formed by BEI were only located in the amorphous lamellae of amylopectin. These differences in the cluster structure of amylopectin between Kinmaze and EM10 endosperm were considered to be responsible for the differences in the A-type and B-type crystalline structures of starch granules between Kinmaze and EM10, respectively. The changes in internal structure of starch granules caused by BEIIb were analyzed by wide angle X-ray diffraction, small-angle X-ray scattering, solid state 13C NMR, and optical sum frequency generation spectroscopy. It was noted that the size the amylopectin cluster in ae endosperm (approximately 8.24 nm) was significantly smaller than that in WT endosperm (approximately 8.81 nm). Based on the present results, we proposed a model for the cluster structure of amylopectin in WT and ae mutant of rice endosperm. We also hypothesized the role of BEIIa in amylopectin biosynthesis in culm where BEIIb was not expressed and instead BEIIa was the major BE component in WT of rice.

13.
Adv Mater ; 32(39): e2002008, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32844527

ABSTRACT

The host-guest interaction as noncovalent bonds can make polymeric materials tough and flexible based on the reversibility property, which is a promising approach to extend the lifetime of polymeric materials. Supramolecular materials with cyclodextrin and adamantane are prepared by mixing host polymers and guest polymers by planetary ball milling. The toughness of the supramolecular materials prepared by ball milling is approximately 2 to 5 times higher than that of supramolecular materials prepared by casting, which is the conventional method. The materials maintain their mechanical properties during repeated ball milling treatments. They are also applicable as self-healable bulk materials and coatings, and they retain the transparency of the substrate. Moreover, fractured pieces of the materials can be re-adhered within 10 min. Dynamic mechanical analysis, thermal property measurements, small-angle X-ray scattering, and microscopy observations reveal these behaviors in detail. Scars formed on the coating disappear within a few seconds at 60 °C. At the same time, the coating shows scratch resistance due to its good mechanical properties. The ball milling method mixes the host polymer and guest polymer at the nano level to achieve the self-healing and recycling properties.

14.
ACS Omega ; 1(3): 476-482, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-31457140

ABSTRACT

We observed the crystallization process in poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) blends using in situ simultaneous small- and wide-angle X-ray scattering measurements with a high-speed temperature control cell. In situ X-ray scattering measurements revealed that density fluctuations larger than the long spacing periods grew during crystallization above 130 °C. In particular, the time evolution of the density fluctuations has a strong dependence on the crystallization temperature. The density fluctuations will promote the crystal nucleation and growth processes of the stereocomplex and increase with increasing crystallization temperature, which is strongly correlated with the complexation of PLLA and PDLA chains. On the other hand, below 120 °C, the kinetics of stereocomplex formation might be hindered by the decreased mobility, and no density fluctuations were observed in the case of homo crystal growth of PLLA or PDLA.

15.
ACS Appl Mater Interfaces ; 7(37): 20779-85, 2015 Sep 23.
Article in English | MEDLINE | ID: mdl-26331696

ABSTRACT

In organic light emitting devices (OLEDs), interfacial structures between multilayers have large impacts on the characteristics of OLEDs. Herein, we succeeded in revealing the interdiffusion in solution processed and thermal annealed OLEDs by neutron reflectometry. We investigated interfaces between a polymer under layer and small molecules upper layer. The small molecules diffused into the swollen polymer layer during the interfacial formation by the solution process, but the polymer did not diffuse into the small molecules layer. At temperatures close to the glass transition temperatures of the materials, asymmetric molecular diffusion was observed. We elucidated the effects of the interdiffusion on the characteristics of OLEDs. Partially mixing the interface improved the current efficiencies due to suppressed triplet-polaron quenching at the interface. Controlling and understanding the interfacial structures of the miultilayers will be more important to improve the OLED characteristics.

16.
Am J Physiol Renal Physiol ; 304(6): F751-60, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23344571

ABSTRACT

The serum glycoprotein fetuin-A is an important inhibitor of extraosseous calcification. The importance of fetuin-A has been confirmed in fetuin-A null mice, which develop widespread extraosseous calcification including the kidney. However, the mechanism how fetuin-A protects kidneys from nephrocalcinosis remains uncertain. Here, we demonstrate that intratubular fetuin-A plays a role in the prevention of nephrocalcinosis in the proximal tubules. Although normal rat kidney did not express mRNA for fetuin-A, we found punctate immunohistochemical staining of fetuin-A mainly in the S1 segment of the proximal tubules. The staining pattern suggested that fetuin-A passed through the slit diaphragm, traveled in the proximal tubular lumen, and was introduced into proximal tubular cells by megalin-mediated endocytosis. To test this hypothesis, we inhibited the function of megalin by intravenous injection of histidine-tagged soluble receptor-associated protein (His-sRAP), a megalin inhibitor. His-sRAP injection diminished fetuin-A staining in the proximal tubules and led to urinary excretion of fetuin-A. We further analyzed the role of fetuin-A in nephrocalcinosis. Continuous injection of parathyroid hormone (PTH) 1-34 induced nephrocalcinosis mainly in the proximal tubules in rats. His-sRAP retained fetuin-A in renal tubular lumen and thereby protected the kidneys of PTH-treated rats from calcification. Our findings suggest that tubular luminal fetuin-A works as a natural inhibitor against calcification in the proximal tubules under PTH-loaded condition.


Subject(s)
Kidney Tubules, Proximal/metabolism , Nephrocalcinosis/metabolism , Nephrocalcinosis/prevention & control , alpha-2-HS-Glycoprotein/metabolism , Animals , Low Density Lipoprotein Receptor-Related Protein-2/antagonists & inhibitors , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Lysosomes/metabolism , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Wistar
17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(2 Pt 1): 021801, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21405853

ABSTRACT

We performed neutron reflectivity measurements on multilayered polymer thin films consisting of alternatively stacked deuterated polystyrene (d-PS) and hydrogenated polystyrene (h-PS) layers ∼200 Å thick as a function of temperature covering the glass-transition temperature T(g), and we found a wide distribution of T(g) as well as a distribution of the thermal expansivity α within the thin films, implying the dynamic heterogeneity of the thin films along the depth direction. The reported anomalous film thickness dependences of T(g) and α were reasonably understood in terms of the distributions, showing that the surface mobile layer and the bottom hard interfacial layer are, respectively, responsible for the depressions of T(g) and α with decreasing film thickness. The molecular mobility in each layer is also discussed in relation to the distribution of T(g), based on the results on mutual diffusion at the layer interface.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(6 Pt 1): 061801, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12188750

ABSTRACT

In order to clarify the structure formation processes in the induction period of polymer crystallization the annealing time dependence of depolarized light-scattering (DPLS) intensities has been investigated as a function of crystallization temperature for poly(ethylene terephthalate), poly(ethylene naphthalate), syndiotactic polystyrene, and isotactic polystyrene. It is found that the induction period may be separated into three stages: the first stage where the DPLS intensity hardly changes with time, the second stage where the intensity increases exponentially, and the third stage where it levels off. Considering that the DPLS provides information about the degree of parallel orientation of rigid polymer segments, the first stage whose time length depends on the annealing temperature may be assigned to a process where the polymer chains begin to partially assume a rigid conformation, generally a helical structure being almost the same as the structure in the corresponding crystal. This process is limited to a time when the average length of the rigid segments attains a critical value given by a Shimada, Doi, and Okano theory [J. Chem. Phys. 88, 7181 (1988)] above which spinodal decomposition (SD) is caused. The second and third stages correspond to the early and late stages of SD, respectively, which was confirmed by small-angle x-ray scattering measurements. The apparent activation energies obtained from the temperature dependence of the DPLS intensities for the three stages were 35-40, 25-50, and 180-400 kJ/mol, respectively, for all the polymers. The large apparent activation energies for the late stage of SD is discussed within a framework of Binder and Stauffer's theory [Phys. Rev. Lett. 33, 1006 (1974)].

SELECTION OF CITATIONS
SEARCH DETAIL
...